top of page
Writer's picturesimpsinbatchrismee

How to Conduct and Analyze Research with SPSS: Research Design and Statistical Analysis PDF Download



The Framework Method is becoming an increasingly popular approach to the management and analysis of qualitative data in health research. However, there is confusion about its potential application and limitations.




research design and statistical analysis pdf download



The Framework Method for the management and analysis of qualitative data has been used since the 1980s [1]. The method originated in large-scale social policy research but is becoming an increasingly popular approach in medical and health research; however, there is some confusion about its potential application and limitations. In this article we discuss when it is appropriate to use the Framework Method and how it compares to other qualitative analysis methods. In particular, we explore how it can be used in multi-disciplinary health research teams. Multi-disciplinary and mixed methods studies are becoming increasingly commonplace in applied health research. As well as disciplines familiar with qualitative research, such as nursing, psychology and sociology, teams often include epidemiologists, health economists, management scientists and others. Furthermore, applied health research often has clinical representation and, increasingly, patient and public involvement [2]. We argue that while leadership is undoubtedly required from an experienced qualitative methodologist, non-specialists from the wider team can and should be involved in the analysis process. We then present a step-by-step guide to the application of the Framework Method, illustrated using a worked example (See Additional File 1) from a published study [3] to illustrate the main stages of the process. Technical terms are included in the glossary (below). Finally, we discuss the strengths and limitations of the approach.


Analytical framework: A set of codes organised into categories that have been jointly developed by researchers involved in analysis that can be used to manage and organise the data. The framework creates a new structure for the data (rather than the full original accounts given by participants) that is helpful to summarize/reduce the data in a way that can support answering the research questions.


As any form of qualitative or quantitative analysis is not a purely technical process, but influenced by the characteristics of the researchers and their disciplinary paradigms, critical reflection throughout the research process is paramount, including in the design of the study, the construction or collection of data, and the analysis. All members of the team should keep a research diary, where they record reflexive notes, impressions of the data and thoughts about analysis throughout the process. Experienced qualitative researchers become more skilled at sifting through data and analysing it in a rigorous and reflexive way. They cannot be too attached to certainty, but must remain flexible and adaptive throughout the research in order to generate rich and nuanced findings that embrace and explain the complexity of real social life and can be applied to complex social issues. It is important to remember when using the Framework Method that, unlike quantitative research where data collection and data analysis are strictly sequential and mutually exclusive stages of the research process, in qualitative analysis there is, to a greater or lesser extent depending on the project, ongoing interplay between data collection, analysis, and theory development. For example, new ideas or insights from participants may suggest potentially fruitful lines of enquiry, or close analysis might reveal subtle inconsistencies in an account which require further exploration.


A good quality audio recording and, ideally, a verbatim (word for word) transcription of the interview is needed. For Framework Method analysis, it is not necessarily important to include the conventions of dialogue transcriptions which can be difficult to read (e.g. pauses or two people talking simultaneously), because the content is what is of primary interest. Transcripts should have large margins and adequate line spacing for later coding and making notes. The process of transcription is a good opportunity to become immersed in the data and is to be strongly encouraged for new researchers. However, in some projects, the decision may be made that it is a better use of resources to outsource this task to a professional transcriber.


The working analytical framework is then applied by indexing subsequent transcripts using the existing categories and codes. Each code is usually assigned a number or abbreviation for easy identification (and so the full names of the codes do not have to be written out each time) and written directly onto the transcripts. Computer Assisted Qualitative Data Analysis Software (CAQDAS) is particularly useful at this stage because it can speed up the process and ensures that, at later stages, data is easily retrievable. It is worth noting that unlike software for statistical analyses, which actually carries out the calculations with the correct instruction, putting the data into a qualitative analysis software package does not analyse the data; it is simply an effective way of storing and organising the data so that they are accessible for the analysis process.


Like all qualitative analysis methods, the Framework Method is time consuming and resource-intensive. When involving multiple stakeholders and disciplines in the analysis and interpretation of the data, as is good practice in applied health research, the time needed is extended. This time needs to be factored into the project proposal at the pre-funding stage.


There is a high training component to successfully using the method in a new multi-disciplinary team. Depending on their role in the analysis, members of the research team may have to learn how to code, index, and chart data, to think reflexively about how their identities and experience affect the analysis process, and/or they may have to learn about the methods of generalisation (i.e. analytic generalisation and transferability, rather than statistical generalisation [41]) to help to interpret legitimately the meaning and significance of the data.


While the Framework Method is amenable to the participation of non-experts in data analysis, it is critical to the successful use of the method that an experienced qualitative researcher leads the project (even if the overall lead for a large mixed methods study is a different person). The qualitative lead would ideally be joined by other researchers with at least some prior training in or experience of qualitative analysis. The responsibilities of the lead qualitative researcher are: to contribute to study design, project timelines and resource planning; to mentor junior qualitative researchers; to train clinical, lay and other (non-qualitative) academics to contribute as appropriate to the analysis process; to facilitate analysis meetings in a way that encourages critical and reflexive engagement with the data and other team members; and finally to lead the write-up of the study.


Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175-191. Download PDF


G*Power (Erdfelder, Faul, & Buchner, 1996) was designed as a general stand-alone power analysis program for statistical tests commonly used in social and behavioral research. G*Power 3 is a major extension of, and improvement over, the previous versions. It runs on widely used computer platforms (i.e., Windows XP, Windows Vista, and Mac OS X 10.4) and covers many different statistical tests of the t, F, and chi2 test families. In addition, it includes power analyses for z tests and some exact tests. G*Power 3 provides improved effect size calculators and graphic options, supports both distribution-based and design-based input modes, and offers all types of power analyses in which users might be interested. Like its predecessors, G*Power 3 is free.


There are several types of statistical analysis for surveys. The one you choose will depend on what you want to know, what type of data you have, the method of data collection, how much time and resources you have available, and the level of sophistication of your data analysis software.


Market researchers love to understand and predict why people make the complex choices they do. Conjoint analysis comes closest to doing this: it asks people to make trade-offs when making decisions, just as they do in the real world, then analyses the results to give the most popular outcome.


A statistical method called chi-squared can be used to test whether the variables in a crosstab analysis are independent or not by looking at whether the differences between them are statistically significant.


Knowing whether what you notice in your results is statistically significant or not gives you the green light to confidently make decisions and present findings based on your results, since statistical methods provide a degree of certainty that most people recognize as valid. So having results that are statistically significant is a hugely important detail for businesses as well as academics and researchers.


Metagenomics applies a suite of genomic technologies and bioinformatics tools to directly access the genetic content of entire communities of organisms. The field of metagenomics has been responsible for substantial advances in microbial ecology, evolution, and diversity over the past 5 to 10 years, and many research laboratories are actively engaged in it now. With the growing numbers of activities also comes a plethora of methodological knowledge and expertise that should guide future developments in the field. This review summarizes the current opinions in metagenomics, and provides practical guidance and advice on sample processing, sequencing technology, assembly, binning, annotation, experimental design, statistical analysis, data storage, and data sharing. As more metagenomic datasets are generated, the availability of standardized procedures and shared data storage and analysis becomes increasingly important to ensure that output of individual projects can be assessed and compared. 2ff7e9595c


0 views0 comments

Recent Posts

See All

Comments


bottom of page